

Data Sheet

January 2002

DiskOnChip[®] 2000 DIP MD2200/2/3

Features

- Single-chip plug-n-play flash disk
- Low power, single 3.3V or 5V power supply
- 16MB to 576MB capacity (1GB in 2002)
- Pinout and structure compatible with DiskOnChip Millennium DIP 8MB
- Simple, easy-to-integrate interface
- 32-pin DIP, JEDEC standard, EEPROM-compatible pinout
- 8KB sized memory window
- Boot OS capability
- Embedded TrueFFS[®] software provides:
 - -Full hard disk read/write emulation
 - Third-generation wear leveling
 - Automatic block management
- Operates with DiskOnChip SDK in OS-less environments, ANSI-C source code kit
- Error Detection and Correction (EDC/ECC) for higher data reliability
- Low power consumption Static Operation
- Broad OS support: DOS, Windows NT4.0/5.0, Windows CE, BE, pSOS+, QNX, VxWorks, and others
- Compatible with major processors: x86, MediaGX, Geode SCxxxx, PowerPC, 68K, MIPS, SHx, StrongARM, and others

Applications

- Embedded systems
- Internet access devices
- Internet set-top boxes/ITV, Web browsers
- WBT, thin clients, network computers
- Routers, networking
- Web phones, car PCs, DVD, HPC
- Point of sale, industrial PCs
- Telecom, medical

Table of Contents

1	Ger	neral Description	4
2	Det	ailed Feature List	5
		TrueFFS Technology	.5
		Low Power Consumption	.5
		Temperature Range	.5
		Easy to Integrate	.6
		Robust Error Correction	.6
		High Reliability	.6
		High Speed	.6
		Compatibility with 8MB DiskOnChip Millennium Series	.6
		Broad Support for Operating Systems and Processors	.6
		Portable Solution – Shorter Time to Market	.7
		Complete Solution	.7
3	Pac	kage Description and Pin List	8
4	Des	igning with the DiskOnChip 2000 Flash Disk	9
		Hardware	
	4.2	Software	9
	4.3	Designing DiskOnChip 2000 into PC Architecture	9
5	Dis	k Capacities and Contents1	1
	5.1	Low-Profile 1	1
	5.2	High-Profile1	1
	5.3	Media Contents 1	1
6	The	ory of Operation1	2
	6.1	Error Detection and Correction (EDC/ECC) 1	2
7	Spe	ecifications 1	3
	7.1	Absolute Maximum Ratings 1	13
	7.2	Capacitance 1	3
		Temperature Ranges 1	
		DiskOnChip Assembly1	
		Humidity	
		EDC/ECC	
	7.7	DC Electrical Characteristics over Operating Range 1	
		7.7.1 Vcc = 5V Characteristics	
		7.7.2 Vcc = 3.3V Characteristics	15

M-Systems Flash Disk Pioneers

DiskOnChip 2000 DIP

	7.8 AC Operating Conditions	15
	7.9 Timing Specifications	16
	7.9.1 Read Cycle Timing	16
	7.9.2 Write Cycle Timing	17
8	Mechanical Dimensions	18
9	Shock and Vibration	19
10	Ordering Information	19
11	Additional Information	20
Hov	w to Contact Us	21

1 General Description

The DiskOnChip 2000 product line is the second-generation of M-Systems' DiskOnChip series of products. The 2000 series provides a small, single-chip, solid-state flash disk in a standard 32-pin DIP package. Combining a disk controller with flash memory on a single chip, DiskOnChip 2000 is *the* solution where minimal weight, space, and power consumption are essential. In consequence, the 2000 series finds use today in a wide range of products, such as information appliances, set-top boxes, thin clients, thin servers, network computers, and embedded, portable computers.

By placing DiskOnChip 2000 in a standard socket, physical space requirements are reduced. Unlike standard IDE drives, no cables or extra space are required. DiskOnChip 2000 has no moving parts, resulting in significantly decreased power consumption and increased reliability. It is easy to use and reduces integration overhead. DiskOnChip 2000 is therefore a very attractive alternative to conventional hard and floppy disk drives.

Using TrueFFS technology, DiskOnChip 2000 delivers full hard disk emulation. As such, the design and integration stages can be considerably reduced, thereby enabling very fast time-to-market and ease of production. Combined with its very attractive cost structure, DiskOnChip 2000 is a superior alternative to resident flash array (RFA).

DiskOnChip 2000 products are available in capacities ranging from 16MB to 576MB. In addition, they are 100% pinout and software compatible with the DiskOnChip Millennium DIP 8MB package. In future versions, the capacity will be dramatically increased (up to 1GB during 2002). Since the same pinout will be retained, the socket on the target platform will not have to be changed to accommodate the larger capacities.

DiskOnChip technology provides broad support for all major operating systems and processors in the market, enabling it to be readily integrated with any architecture.

DiskOnChip 2000 is shipped as a plug-and-play device that is fully tested and formatted, and programmed with a DOS driver. Future driver, software or content upgrades, or formatting, can be made on-board or off-board using DiskOnChip utilities and accessories provided by M-Systems.

2 Detailed Feature List

TrueFFS Technology

For a flash disk to emulate a hard disk, a software management layer is required. TrueFFS is M-Systems' patented flash file system management technology that allows flash components to fully emulate hard disks, so they can be written to and read from like any other hard disk.

TrueFFS software simplifies and enhances flash memories by:

- Using third-generation wear leveling, which ensures that all blocks are erased an equal number of times. This increases the life of the flash media by orders of magnitude.
- Using virtual blocking of the flash device to make erasure of large blocks transparent to the operator.
- Automatic block mapping.
- Implementing a robust power-loss recovery mechanism to guarantee absolute protection of data.
- Providing conventional address support for various architecture configurations.
- The TrueFFS driver supports 8-bit, 16-bit, and 32-bit bus architectures. Support for the 16-bit and 32-bit bus architectures, typically used in RISC processors, can be achieved by using the LSB of the data bus as follows:
 - For 16-bit address boundary shifts, shift the address lines by *one*, so that the host address line A1 connects to DiskOnChip 2000 address line A0, the host address line A2 connects to DiskOnChip 2000 line A1, and so on.
 - For 32-bit address boundary shifts, shift the address lines by *two*, so that the host address line A2 connects to DiskOnChip 2000 address line A0, the host address line A3 connects to DiskOnChip 2000 line A1, and so on.

Refer to Application Note AP-DOC-030 for more details.

Low Power Consumption

The internal functions are synchronized with the CPU's read and write strobes. This innovation eliminates the need for an external clock and dramatically reduces power consumption. DiskOnChip 2000 requires only a single 3.3V or 5V power supply, which helps simplify integration.

These features make DiskOnChip 2000 the best cost/performance solution for computers that require minimal weight, space, and power consumption, providing a very attractive alternative to conventional hard and floppy disk drives.

Temperature Range

DiskOnChip 2000 is available in both commercial (0 °C to +70 °C) and extended (-40 °C to +85 °C) temperature ranges.

* DiskOnChip 2000 192MB and 576MB capacities are available only for commercial temperature ranges.

M-Systems Flash Disk Pioneers

Easy to Integrate

Fast integration is ensured by the following DiskOnChip 2000 features:

- Compatibility with standard EEPROM DIP pinout
- Support for local bus and ISA bus interface
- Small memory map window size only 8KB
- Static operation no clock required
- 16mA output drive (18mA at 3.3V)

Robust Error Correction

The DiskOnChip family utilizes a Reed-Solomon Error Detection Code (EDC) and Error Correction Code (ECC), providing the following error immunity for each 512-byte block of data:

- Corrects up to two 10-bit symbols, including two random bit errors
- Corrects single bursts of up to 11 bits
- Detects single bursts of up to 31 bits, and double bursts of up to 11 bits
- Detects up to 4 random bit errors

High Reliability

DiskOnChip 2000 can be inserted into standard DIP sockets, eliminating the need for mechanical disk drives, bulky ribbon cables and connectors. The design of DiskOnChip 2000 ensures high reliability even when subjected to levels of shock, vibration, and temperature changes that would destroy a conventional magnetic disk drive.

High Speed

DiskOnChip 2000 implements an integrated architecture for data transfers, which eliminates bottlenecks typical in this area. Additionally, it doubles read performance and significantly improves write performance, in comparison to competitive alternatives. DiskOnChip 2000 can sustain system write speeds of over 550KB per second, read speeds of more than 1.4MB per second (measured in ISA no wait state environment) and read/write burst transfer rates of nearly 5MB per second.

Compatibility with 8MB DiskOnChip Millennium Series

DiskOnChip 2000 is a 32-pin Dual Inline Package (DIP) that provides 100% pinout compatibility with M-Systems' DiskOnChip Millennium DIP (8MB). DiskOnChip 2000 is fully software compatible with M-Systems' DiskOnChip Millennium DIP (8MB), for version 1.21 and higher.

Broad Support for Operating Systems and Processors

The DiskOnChip family of products, supplied with TrueFFS firmware, supports a wide range of operating systems (OS), including DOS, Windows 2000, Windows CE, Windows NT, Windows Embedded NT, BE, QNX, VxWorks, pSOS, Linux, FreeBSD, PharLap ETS, VRTX and more.

In addition, leading operating systems such as Windows CE and Tornado, offer native support for the DiskOnChip family of products for easy integration.

For OS-less applications and customized solutions, M-Systems offers its DiskOnChip TrueFFS SDK, an ANSI-C source code kit designed specifically to support these environments.

The DiskOnChip family of products is compatible with all major processors, supporting popular processors such as x86, 68K, MediaGx, Geode SCxxxx, PowerPC, MIPS, SHx, StrongARM, and many others.

Portable Solution – Shorter Time to Market

The development and integration time for implementing a flash disk is greatly reduced by DiskOnChip's standard software interface, which provides portability to other operating systems and processors and thereby shortens your time to market.

Complete Solution

The DiskOnChip 2000 series offers a full flash disk solution that includes different voltage and temperature options, software drivers tailored to your operating system, data sheets, application support and online email support.

Using DiskOnChip evaluation boards (EVB), you can develop your software before the target hardware is ready.

The DiskOnChip GANG Programmer reduces your production time, and facilitates fast response time to application software changes during production stages.

In all, DiskOnChip offers a complete set of tools for delivering a complete solution whenever your application can use a flash disk.

3 Package Description and Pin List

Figure 1: Package Description and Pinout

Pin Name	Description	Pin Number	Direction
A0 - A12	Address bus	4 to 12, 23, 25 to 27	Input
D0 – D7	Data bus	13 to 15, 17 to 21	I/O
CE#	Chip Enable, active low	22	Input
OE#	Output Enable, active low	24	Input
WE#	Write Enable, active low	31	Input
NC	Not Connected. These pins may be left floating, tied to Vcc, GND or logic levels. Absolute Maximum Ratings must be observed.	1, 2, 3, 28, 29, 30	
VCC	Power	32	
GND	Ground	16	

4 Designing with the DiskOnChip 2000 Flash Disk

4.1 Hardware

DiskOnChip 2000 should be connected as a standard memory device, using standard memory interface signals. Typically, DiskOnChip 2000 can be mapped to any free 8KB memory space. In PC architectures, if the memory window allocated to DiskOnChip 2000 is larger than 8KB, an automatic anti-aliasing mechanism prevents the firmware from being loaded more than once. Figure 1 illustrates a typical interface between DiskOnChip 2000 and a system.

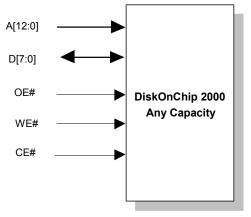


Figure 2: Simplified I/O Diagram

4.2 Software

DiskOnChip 2000, under control of TrueFFS, is accessed using standard file system calls like any other block device. Applications can write to and read from any sector on DiskOnChip 2000, which is compatible with all diagnostic utilities, applications and file systems.

The flash memory within DiskOnChip 2000 is accessed by TrueFFS through an 8KB window in the CPU's memory space. TrueFFS handles the paging of this window in the flash array, as well as providing flash disk emulation that includes flash table management, wear leveling, mapping out bad blocks, and background space reclamation of unused flash blocks.

The same 8KB address space will be retained in future versions of DiskOnChip 2000 that offer greater capacities.

4.3 Designing DiskOnChip 2000 into PC Architecture

When used in PC-compatible architectures, DiskOnChip 2000 is allocated an 8KB memory window in the BIOS expansion memory range, which is usually located between 0C8000h and 0EFFFFh. Figure 3 illustrates the DiskOnChip 2000 memory window in relation to the PC memory map.

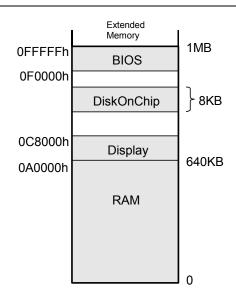


Figure 3: PC Memory Map

After reset, the BIOS executes the POST (Power On Self-Test), and then searches for all expansion ROM devices. When DiskOnChip 2000 is found, the BIOS executes the Initial Program Loader (IPL) code located in the boot-block area of DiskOnChip 2000. This code loads the TrueFFS driver into system memory, installs DiskOnChip 2000 as a disk in the system, and then returns control back to the BIOS code. The operating system subsequently attempts to identify disks that are available and the DiskOnChip 2000 software (TrueFFS) responds by emulating a hard disk.

From this point onward, DiskOnChip 2000 is identified by the system as a standard disk drive. It is assigned a drive letter and it can be used by any software application. No BIOS setup modifications, autoexec.bat/config.sys modifications or external software are required.

- DiskOnChip 2000 can be used as the only disk in the system, in which case it will be accessed as drive [C:].
- DiskOnChip 2000 can operate with or without a floppy drive, or with additional hard disks. When working with a hard disk, DiskOnChip 2000 can be configured as the last drive (the default configuration). In this case, the hard disk will be drive [C:] and DiskOnChip 2000 will be drive [D:].
- DiskOnChip 2000 can also be configured as the first drive. In this case, the hard disk will be drive [D:] and DiskOnChip 2000 will be drive [C:].
- DiskOnChip 2000 can be used as the boot device when configured as drive [C:]. In this configuration, you must format DiskOnChip 2000 as a bootable device by copying the OS files onto the disk. When running DOS, use the SYS command for this purpose.

5 Disk Capacities and Contents

The capacities for the various models are detailed in the following two tables.

5.1 Low-Profile

Model	Formatted Capacity (bytes)	Sectors	Formatted Capacity under DOS 6.22 (bytes)	Sectors under DOS 6.22
MD2202-D16	16,375,808	31,984	16,324,608	31,884
MD2200-D24	24,592,384	48,032	24,516,608	47,884
MD2202-D32	32,800,768	64,064	32,724,992	63,916
MD2202-D48	49,233,920	96,160	49,092,608	95,884
MD2202-D64	65,683,456	128,288	65,525,760	127,980
MD2202-D96	98,566,144	192,512	98,390,016	192,168
MD2202-D192	197,279,744	381,300	103,829,024	385,280

5.2 High-Profile

Model	Formatted Capacity (bytes)	Sectors	Formatted Capacity under DOS 6.22 (bytes)	Sectors under DOS 6.22
MD2203-D80	82,116,608	160,384	81, 989, 632	160,136
MD2203-D112	114,999,296	224,608	114, 786, 304	224,192
MD2203-D144	147,881,984	288,832	147, 578, 880	288,240
MD2203-D160	164,331,520	320,960	164, 151, 296	320,608
MD2203-D192	197,214,208	385,184	196, 980, 736	384,728
MD2203-D224	230, 031, 360	449, 280	229, 584, 896	448, 408
MD2203-D256	262, 930, 432	513, 536	262, 647, 808	512, 984
MD2203-D288	295, 796, 736	577,728	295, 624, 704	577,392
MD2203-D576	591, 790, 080	1,142,970	311, 427, 072	1,155,776

5.3 Media Contents

DiskOnChip 2000 products are shipped from M-Systems fully tested, already formatted, and come with a DOS driver.

6 Theory of Operation

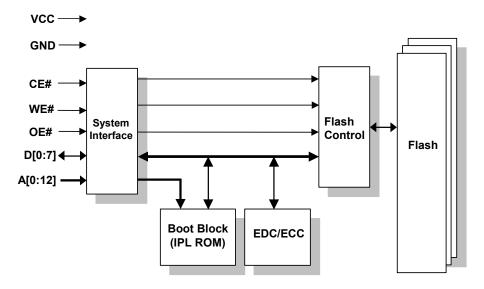


Figure 4: DiskOnChip 2000 Simplified Block Diagram

DiskOnChip 2000 appears to the system's hardware as a standard EEPROM, via the System Interface block. The host cycles are passed to the Flash Control block, to be written to or read from the flash device.

To ensure the highest level of reliability, each cycle is monitored by the EDC/ECC (Error Detection and Correction) block. In write cycles, the EDC/ECC block generates a syndrome for every sector that contains data, which is stored in the flash together with the sector. When the sector is read, the syndrome is regenerated for the data and compared with the original syndrome. When a mismatch is detected, it is repaired.

The boot block is responsible for answering the BIOS expansion search in PC architectures. After the BIOS identifies DiskOnChip 2000 as a valid BIOS expansion device, it executes the code stored in the boot block. The BIOS then loads the TrueFFS software from the flash memory into the host memory, delivering full disk capabilities to the operating system. This code is identical for all DiskOnChip 2000 capacities, since TrueFFS automatically detects the memory capacity of DiskOnChip 2000.

6.1 Error Detection and Correction (EDC/ECC)

DiskOnChip 2000 uses the Reed-Solomon EDC/ECC algorithm to ensure high data reliability. Each time a block of data is written to the flash, a 6-byte checksum is also written. Each time the data is read back from the flash, a new 6-byte code is computed. TrueFFS uses these checksums for error detection and, if necessary, error correction.

7 Specifications

7.1 Absolute Maximum Ratings

Parameter	Symbol	3.3V Model Rating ¹	5V Model Rating ¹	Units	Notes
DC supply voltage	V _{CCS}	-0.5 to 4.6	-0.3 to 6.0	V	
Input pin voltage ²	V _{IN}	-0.5 to V _{CC} + 0.3	-0.3 to V _{CC} + 0.3	V	
Input pin current	I _{IN}	Not Specified	-10 to 10	mA	+25 °C

Note 1: Permanent device damage may occur if absolute maximum ratings are exceeded. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: The voltage on any pin may undershoot to -2.0V or overshoot to Vcc+2.0V for periods <20ns.

7.2 Capacitance

Symbol	Parameter	Conditions	3.3V Model Rating	5V Model Rating	Unit
C	Input/Output	MD2200/2, V _{IN} = 0V	12	15	pF
	Capacitance	MD2203, V _{IN} = 0V	36	45	pF

Note: Capacitance is not 100% tested.

7.3 Temperature Ranges

Commercial operating temperature:	0 °C to +70 °C*
Extended operating temperature:	-40 °C to +85 °C
Storage temperature:	-50 °C to +85 °C

*DiskOnChip 2000 192MB and 576MB capacities are available only for commercial temperature ranges.

7.4 DiskOnChip Assembly

The DiskOnChip 2000 DIP device is not hermetically sealed. Therefore, it must be assembled after the PCB goes through its final rinse. Assembling DiskOnChip 2000 prior to the rinse phase may cause it to absorb moisture. Failure to adhere to the above assembly instruction can lead to device failures not covered by M-Systems' warranty.

Note: DiskOnChip 2000 DIP requires a DIP socket on the target platform. Due to its plastic shell and molding material, it cannot be soldered directly to the platform.

7.5 Humidity

10% - 90% relative, non-condensing

M-Systems Flash Disk Pioneers

7.6 EDC/ECC

Enhanced Reed-Solomon:

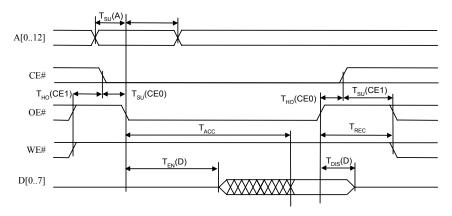
- Corrects up to two 10-bit symbols, including two random bit errors.
- Corrects single bursts of up to 11 bits.
- Detects single bursts of up to 31 bits and double bursts of up to 11 bits.
- Detects up to 4 random bit errors.

7.7 DC Electrical Characteristics over Operating Range

7.7.1 Vcc = 5V Characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{CCS}	System Supply Voltage		4.5	5.0	5.5	V
V _{IH}	High-level Input Voltage		2.0			V
VIL	Low-level Input Voltage				0.8	V
V _{OH}	High-level Output Voltage	I _{OH} = -16mА	2.4			V
V _{OL}	Low-level Output Voltage	I _{OL} = 16mA			0.4	V
I _{IL}	Input Leakage Current	MD2200, MD2202			±10	μA
		MD2203			±30	μA
l _{oz}	Output Leakage Current	MD2200, MD2202			±10	μA
		MD2203			±30	μA
I _{VCC}	Supply Current	200ns Cycle Time, Outputs open		40	60	mA
I _{STDBY}	Standby Current	MD2200, MD2202		60	400	μA
		MD2203		240	1200	μA

7.7.2 Vcc = 3.3V Characteristics


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CCS}	System Supply Voltage		3.0	3.3	3.6	V
V _{IH}	High-level Input Voltage		2.7			V
V _{IL}	Low-level Input Voltage				0.6	V
V_{HYS}	Input Voltage Hysteresis		1.1		1.5	V
V	Lligh lovel Output Veltage	I _{OH} = -18mА	2.4			V
V _{он}	High-level Output Voltage	I _{ОН} = 0mА	Vcc-0.1			V
Vol	Low-level Output Voltage	I _{OL} = 18mA			0.4	V
VOL		I _{OL} = 0mA			0.1	V
L.	Input Leakage Current	MD2200, MD2202			±10	μA
IIL		MD2203			±30	μA
1	Output Look and Output	MD2200, MD2202			±10	μA
l _{oz}	Output Leakage Current	MD2203			±30	μA
I _{VCC}	Supply Current	150ns Cycle Time, Outputs open		30	60	mA
	Standby Current	MD2200, MD2202		70	400	μA
ISTDBY	Standby Current	MD2203		300	1350	μA

7.8 AC Operating Conditions Timing specifications are based on the following conditions:

Parameter	3.3V Model	5V Model
Supply Voltage	V _{CC} = 3.3V ±0.3V	V_{CC} = 5V \pm 0.5V
Input Pulse Levels	0.2V to 2.9V	0.4V to 2.6V
Input Rise and Fall Times	1ns	5ns
Input and Output Timing Levels	1.5V	0.8V and 2.0V
Output Load	100 pF	50 pF

7.9 Timing Specifications

7.9.1 Read Cycle Timing

Figure	5.	Read	Cvcle
riyure	υ.	neau	Cycle

Symbol	Description	3.3V		5V		Notes
		Min (ns)	Max (ns)	Min (ns)	Max (ns)	
T _{SU} (A)	Address to OE# $oldsymbol{\psi}$ setup	2		10		
T _{HO} (A)	OE# ψ to Address hold	35		56		
T _{SU} (CE0)	CE# ψ to OE# ψ setup	0		0		1
T _{HO} (CE0)	$OE#\uparrow$ to $CE# = 0$ hold	0		0		2
T _{HO} (CE1)	OE# or WE#↑ to CE# = 1 hold	8		42		
T _{SU} (CE1)	CE# \uparrow to WE# or OE# \downarrow setup time	8		42		
T _{REC}	OE# ↑ to start of next cycle	20		59		
T _{ACC}	Read access time		110		130	
T _{EN} (D)	OE# ψ to D active delay	15	75	7	91	
T _{DIS} (D)	OE# ↑ to D Hi-Z delay		13		44	

Note 1: CE# may be asserted any time before or after OE# is asserted. If CE# is asserted after OE#, all timing relative to OE# asserted will be referenced instead to the time CE# was asserted.

Note 2: CE# may be negated any time before or after OE# is negated. If CE# is negated before OE#, all timing relative to OE# negated will be referenced instead to the time CE# was negated.

7.9.2 Write Cycle Timing

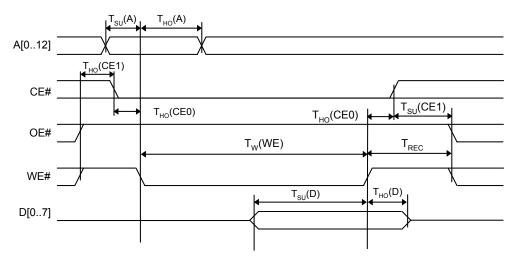


Figure 6: Write Cycle

Symbol	Description	3.3V		5V		Notes
		Min (ns)	Max (ns)	Min (ns)	Max (ns)	
T _{SU} (A)	Address to WE# $oldsymbol{\psi}$ setup time	0		10		
T _{HO} (A)	WE# ψ to Address hold time	35		56		
T _W (WE)	WE# asserted width	62		98		
T _{SU} (CE0)	CE# ψ to WE# ψ setup time	0		0		1
T _{HO} (CE0)	WE# \uparrow to CE# = 0 hold time	0		0		2
T _{HO} (CE1)	OE# or WE# \uparrow to CE# = 1 hold time	8		42		
T _{SU} (CE1)	CE# Λ to WE# or OE# \downarrow setup time	8		42		
T _{REC}	WE# ↑ to start of next cycle	22		59		
T _{SU} (D)	D to WE# ↑ setup time	50		48		
T _{HO} (D)	WE# ↑ to D hold time	0		40		

Note 1: CE# may be asserted any time before or after WE# is asserted. If CE# is asserted after WE#, all timing relative to WE# asserted will be referenced instead to the time CE# was asserted.

Note 2: CE# may be negated any time before or after WE# is negated. If CE# is negated before WE#, all timing relative to WE# negated will be referenced instead to the time CE# was negated.

8 Mechanical Dimensions

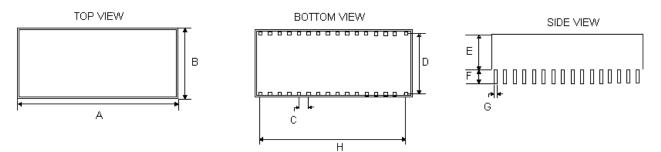


Figure 7: MD220x Mechanical Dimensions

Low-Profile

	MD2200	MD2202
	Millimeters (max.)	Millimeters (max.)
Α	41.9	43.95
В	18.05	18.3
С	2.54	2.54
D	15.24	15.24
Е	5.7	6.0
F	4.0	4.0
G	0.51	0.51
Η	38.2	38.2

High-Profile

	MD2203		
	Millimeters (max.)		
Α	45.6		
В	18.8		
С	2.54		
D	15.24		
Е	13.5		
F	4.0		
G	0.51		
Н	38.2		

Note: The above dimensions are maximum values.

9 Shock and Vibration

Reliability Test	Test Conditions	Reference Standard
Vibration	100Hz~2000Hz, 15G peak, 3 cycles per axis (1hr.), 3 axes	STD-202F, Method 204D
Mechanical Shock	Half sine shock 50G, 11msec, +/-3 shock per axis, 3 axes	STD-202F, Method 213B

10 Ordering Information

MD2200-DCC-V-T (Low-Profile)

	CC:	Capacity (MB)	24	
	V:	Supply Voltage	Blank V3	5V 3.3V
	T:	Temperature Range (optional)	Blank X	Commercial: 0 °C to +70 °C Extended: -40 °C to +85 °C
MD2	202-DC	CC-V-T (Low-Profile)		
	CC:	Capacity (MB)	16, 32, 48, 64, 9	96, 192*
	V:	Supply Voltage	Blank V3	5V 3.3V
	T:	Temperature Range (optional)	Blank X	Commercial: 0 °C to +70 °C Extended: -40 °C to +85 °C
MD2	203-DC	CC-V-T (High-Profile)		
	CCC:	Capacity (MB)	80, 112, 144, 1	60, 192, 224, 256, 288, 576*
	V:	Supply Voltage	Blank V3	5V 3.3V
	T:	Temperature Range (optional)	Blank X	Commercial: 0 °C to +70 °C Extended: -40 °C to +85 °C

* DiskOnChip 2000 DIP 192MB and 576MB capacities are available only for commercial temperature ranges.

11 Additional Information

Document/Tool	Description
DiskOnChip Utilities	DiskOnChip Utilities User Manual
DiskOnChip Quick Installation Guide	DiskOnChip Quick Installation Guide
AP-DOC-010	Application Note: Designing with DiskOnChip DIP
AP-DOC-016	Application Note: Using DiskOnChip with QNX
AP-DOC-020	Application Note: DiskOnChip Boot Developers Kit
AP-DOC-030	Application Note: Designing DiskOnChip Millennium in RISC Environment
AP-DOC-031	Application Note: Designing with DiskOnChip Millennium in a PC Environment
AP-DOC-039	Application Note: Onboard Programming of the DiskOnChip Millennium
AP-DOC-047	Application Note: Designing DiskOnChip as a Flash Disk & Boot Device Replacement
IM-DOC-017	Installation Manual: Using DiskOnChip with Windows CE
IM-DOC-021	Installation Manual: Using DiskOnChip with Linux O/S
IM-DOC-022	Installation Manual: Using DiskOnChip with VxWorks
DiskOnChip TrueFFS SDK Product Brief	DiskOnChip TrueFFS SDK Product Brief
DiskOnChip DIP EVB	DiskOnChip DIP Evaluation Board
DiskOnChip GANG Programmer	DiskOnChip 1+8 DIP GANG Programmer

How to Contact Us

Internet:

E-mail:

USA Office:

M-Systems Inc. 8371 Central Ave, Suite A Newark CA 94560 Phone: +1-510-494-2090 Fax: +1-510-494-5545

Taiwan Office:

Room B, 13 F, No. 133 Sec. 3 Min Sheng East Road Taipei, Taiwan R.O.C. Tel: +886-2-8770-6226 Fax: +886-2-8770-6295

Japan Office:

M-Systems Japan Inc. Arakyu Bldg., 5F 2-19-2 Nishi-Gotanda Shinagawa-ku Tokyo 141-0031 Phone: +81-3-5437-5739 Fax: +81-3-5437-5759

M-Systems assumes no responsibility for the use of the material described in this document. Information contained herein supersedes previously published specifications on this device from M-Systems. M-Systems reserves the right to change this document without notice.

http://www.m-sys.com

info@m-sys.com

China Office:

25A International Business Commercial Bldg. Nanhu Rd., Lou Hu District Shenzhen, China 518001 Phone: +86-755-519-4732 Fax: +86-755-519-4729

Europe and Israel Office:

M-Systems Ltd. 7 Atir Yeda St. Kfar Saba 44425, Israel Tel: +972-9-764-5000 Fax: +972-3-548-8666